
CHAPTER 29

Building Reports in an Access Project

As you learned in the previous chapters about Access projects, the most noticeable
differences between Access desktop databases (.accdb) and Access project fi les

(.adp) are in the tables and queries (views, functions, and stored procedures). You need
to consider only a few differences when working with forms—and even fewer when
working with reports.

As with forms, reports in an Access project are nearly identical to reports in an Access
desktop database. You can get started building most reports without knowing any
details about the differences. In the previous chapter, you learned about how different
types of queries used as record sources can affect the way you build your forms. The
same is true for reports. Because you are working with data from Microsoft SQL Server,
it is important to understand the key differences of all the query types and how to max-
imize their effi ciency when using them as record sources in your reports.

Note
This chapter assumes that you have already read the earlier chapters on report design

(Chapter 14, “Using Reports”; Chapter 15, “Constructing a Report”; and Chapter 16,

“Advanced Report Design”) and have a good grasp of the basic report design concepts.

You should be familiar with the report designer and know how to create reports that

allow you to view grouped and aggregate data. You can fi nd the examples discussed in

this chapter in the project fi le version of the Conrad Systems Contacts sample applica-

tion, Contacts.adp, on the companion CD.

Understanding Report Differences in an Access Project
To understand the report differences in an Access project, open the Conrad Systems
Contacts project fi le (Contacts.adp), and then open the rptProductsPlain report in Print
Preview. Figure 29-1 shows the report in Print Preview. (This is one of the few reports in
the sample project fi le that does not have a custom Ribbon.)

Note
This chapter assumes that you have already read the earlier chapters on report design

(Chapter 14, “Using Reports”; Chapter 15, “Constructing a Report”; and Chapter 16,

“Advanced Report Design”) and have a good grasp of the basic report design concepts.

You should be familiar with the report designer and know how to create reports that

allow you to view grouped and aggregate data. You can fi nd the examples discussed in

this chapter in the project fi le version of the Conrad Systems Contacts sample applica-

tion, Contacts.adp, on the companion CD.

Understanding Report Differences in an 
Access Project  . 1567

Working with Server Filters . 1570

Working with Input Parameters . . . . . . . . . . . . . . . . . . 1572

 1567

C29623252.indd 1567 2/23/2007 9:48:28 PM

Figure 29-1  Here is a sample report in a project file displayed in Print Preview.

Notice that the navigation bar at the bottom of the report includes the Stop Refresh
and Set The Maximum Record Count buttons that you can see on forms in a project,
but they are disabled. When you’re viewing reports in a project file, these buttons are
always disabled. Unlike forms, Access project reports always fetch all records before
displaying any data. Keep in mind that a report represents a complete summary of
information that is meant to be displayed or printed, not updated. A report might
include grouping or totals that require the entire recordset in order to be calculated cor-
rectly. If a report returned only a partial recordset, totals and averages included in the
report would be inaccurate.

Because reports always return all the rows in the record source, it is important to limit
the record source to only the rows that the user needs to see. If a large report returns
mostly unnecessary information, a lot of time and server resources will be wasted.
Instead, try to create recordsets that return only the data that the user needs to view.
For example, you might want to print a report about companies that have a training
department or the invoices for a specific company and date. You can do this by using a
variety of methods, such as building queries as record sources that limit the size of the
recordset, using server filters, or using code to build or filter the recordset based on the
choices of the user (searching for a record) in a form before opening the report. Using
methods like these makes the database easier to use and also lessens the strain you
place on the server.

C
h

ap
ter 29

1568 Chapter 29  Building Reports in an Access Project

C29623252.indd 1568 2/23/2007 9:48:28 PM

Setting Project Report Properties
Let’s take a look at some of the new properties you can set for a report in an Access
project. Click the arrow in the Views group on the Home tab, and click Design View
from the list of available views to switch the rptProductsPlain report to Design view.
(Alternatively, if you didn’t open the report previously, right-click the report name in
the Navigation Pane, and then click Design View.) Open the Property Sheet window by
clicking the Property Sheet button in the Tools group on the Design tab. Select the Data
tab to see the data properties for the report, as shown in Figure 29-2.

Figure 29-2  A report in an Access project fi le has a few more data properties than a desktop 
database does.

Note
You cannot open reports in Layout view when using Access project (.adp) fi les. In

 Microsoft Offi ce Access 2007, you can make design-level changes to reports in project

fi les only by using Design view.

Record Source Qualifi er, Server Filter, and Input Parameters are properties that you’ll
fi nd in reports in an Access project (.adp) but not in reports in a desktop database
(.accdb).

If you have read Chapter 28, “Designing Forms in an Access Project,” these properties
should already be familiar to you. Table 29-1 shows all the properties that are different
for a report in an Access project. You can refer to this table for a brief defi nition of how
you can use each property.

Note
You cannot open reports in Layout view when using Access project (.adp) fi les. In

 Microsoft Offi ce Access 2007, you can make design-level changes to reports in project

fi les only by using Design view.

  Understanding Report Differences in an Access Project 1569

C
h

ap
te

r
29

C29623252.indd 1569 2/23/2007 9:48:29 PM

Table 29-1  Additional Report Properties in an Access Project

Property Tab Description

Record Source Qualifier Data Identifies the SQL Server owner of the record
source for this report. Unless a different owner has
been specified by an administrator on SQL Server,
this value is normally dbo. (short for database
owner).

Server Filter Data Specifies a filter that Access sends to the server to
limit the rows from the server when the user opens
the report.

Input Parameters Data Allows you to specify the values of any input
parameters that are used in the SQL record source
of the report.

Working with Server Filters
As you learned in Chapter 28, when you specify a server filter, Office Access 2007
includes the filter in the request it sends to the server. The server selects the rows that
meet the criteria in the server filter and sends only the requested data back to Access
2007. Server filters are advantageous because they reduce the size of the recordset,
fetching only the data the user needs to see. You can also set the Filter property on a
report, but Access doesn’t apply that filter until it has fetched all the unfiltered data
from the server. Using a server filter cuts down on the time a server must spend pro-
cessing the recordset and eliminates the time that Access would otherwise spend apply-
ing the filter on your client computer. You can imagine that using a server filter can
have a significant impact on the efficiency of your reports, particularly when the under-
lying tables needed for a report contain hundreds of thousands of rows.

Although server filters are very advantageous, you can use them only when your report
has a table or a view as its record source. You can define a server filter for a report that
is bound to an in-line function, but Access ignores it. If you try to define a server filter
for a report bound to a stored procedure, Access displays a warning message when you
try to open the report: “A Server Filter cannot be applied to a stored procedure Record
Source. Filter not applied.” Tables and views do not support parameters, so you cannot
design a report that uses both parameters and server filters. As you’ll learn later in this
chapter, parameters can be just as effective as server filters when you bind your report
to a function or stored procedure.

To see how server filters work, open the rptXmplCompanyContactsServerFilter report
in Print Preview. Access displays a result, as shown in Figure 29-3.

C
h

ap
ter 29

1570 Chapter 29  Building Reports in an Access Project

C29623252.indd 1570 2/23/2007 9:48:29 PM

Figure 29-3  This sample report is based on a view that has a server filter defined.

Notice that the report displays only two of the 16 companies in the database. If you
switch to Design view and look at the Server Filter property, you’ll find the following:

Department = 'Management'

This example is similar to the server filter example shown in Chapter 28 and illustrates
how you can use the server filter effectively in both forms and reports. The Server Fil-
ter property contains criteria that you might find in a WHERE clause, but without the
WHERE keyword. Remember that Access sends this filter to the server, so you must use
SQL Server syntax: single quotes surrounding date/time and string literals, and % and
_ wildcard characters in a LIKE comparison instead of * and ?. If you need to specify
multiple criteria, you can do so by joining them with multiple AND or OR Boolean
operators. Here is an example of a single criterion:

StateOrProvince LIKE 'N%'

You can change the Server Filter property to this criterion and then change to the
Report window. Notice that the report now displays four companies instead of two. You
can also specify criteria as complex as necessary to get the job done. This report uses a
subreport to display the contact information for each company. If you want to filter on
the contact information, you must use a subquery. (See Article 2, “Understanding SQL,”
on the companion CD for details about using subqueries to filter data.) For example, if
you want to list all companies that have a contact who is contact type Customer in the
state of Pennsylvania, you could specify the following filter:

CompanyID IN (SELECT CompanyID FROM tblCompanyContacts

INNER JOIN tblContacts

ON tblCompanyContacts.ContactID = tblContacts.ContactID

WHERE tblContacts.ContactType = 'Customer'

AND tblContacts.WorkStateOrProvince = 'PA')

  Working with Server Filters 1571

C
h

ap
te

r
29

C29623252.indd 1571 2/23/2007 9:48:29 PM

Using the preceding fi lter returns the two companies in Pennsylvania that have one or
more contacts categorized as customers.

Access provides the option to specify both server fi lters and regular fi lters in your

reports. Remember that server fi lters are always more effi cient because the server applies

the fi lter before returning the data. Unless you have a very compelling reason to fi lter the

data after it is returned to the report, always use server fi lters instead.

Working with Input Parameters
Server fi lters are great if you need to fi lter the data from a table or view. However, they
don’t work if your recordset results from an in-line function or a stored procedure. For-
tunately, in-line functions and stored procedures can use input parameters to control
the data they return.

When you use a parameter query as the record source for a report, you can let Access
prompt the user for the parameters when the user opens the report. However, reports in
an Access project also have an input parameter that allows you to specify an alternative
way to resolve parameters that are required in the in-line function or stored procedure
that serves as the report’s record source.

When considering what type of query to use as the record source of a report, the ques-

tion really boils down to using server fi lters versus using input parameters. You can use

either method to return the data you want to display, but each method has its own

advantages.

Server fi lters are easy to defi ne and are best used when you know you are going to be

fi ltering the data the same way every time you view the report. Examples include fi lter-

ing products by a particular category, displaying a list of active employees, or showing

the current sales tax rate for the 50 states. Use a view or a table whenever you use server

fi lters.

Input parameters are versatile and are best used when you need to allow your users

to specify criteria to limit the recordset of the report. Examples include showing all the

employees for a selected company, displaying a list of all sales within a specifi ed date

range, or looking up the detailed information for a particular contact. Use an in-line

function or a stored procedure whenever you use input parameters.

If you don’t intend to use either server fi lters or input parameters, use a view as your

record source because it is simple and effi cient.

INSIDE OUT Reduce Network Traffi c by Using Server Filters

Access provides the option to specify both server fi lters and regular fi lters in your

reports. Remember that server fi lters are always more effi cient because the server applies

the fi lter before returning the data. Unless you have a very compelling reason to fi lter the

data after it is returned to the report, always use server fi lters instead.

INSIDE OUT

INSIDE OUT Choosing the Type of Query Used as the Record Source
of a Report

When considering what type of query to use as the record source of a report, the ques-

tion really boils down to using server fi lters versus using input parameters. You can use

either method to return the data you want to display, but each method has its own

advantages.

Server fi lters are easy to defi ne and are best used when you know you are going to be

fi ltering the data the same way every time you view the report. Examples include fi lter-

ing products by a particular category, displaying a list of active employees, or showing

the current sales tax rate for the 50 states. Use a view or a table whenever you use server

fi lters.

Input parameters are versatile and are best used when you need to allow your users

to specify criteria to limit the recordset of the report. Examples include showing all the

employees for a selected company, displaying a list of all sales within a specifi ed date

range, or looking up the detailed information for a particular contact. Use an in-line

function or a stored procedure whenever you use input parameters.

If you don’t intend to use either server fi lters or input parameters, use a view as your

record source because it is simple and effi cient.

INSIDE OUT

C
h

ap
ter 29

1572 Chapter 29  Building Reports in an Access Project

C29623252.indd 1572 2/23/2007 9:48:31 PM

In the sample database, you can find a simple stored procedure, spXmplInvoiceParm,
that returns rows from the tblCompanies and tblInvoices tables and includes param-
eters to filter the company name and the date of the invoice. In Chapter 28, you learned
the various techniques that you can use to resolve the parameter when you use this
query in a form using three sample forms. In the sample Contacts.adp project file, you
can find three sample reports that illustrate these same techniques when you’re work-
ing with reports in an Access project. The first report, rptXmplInvoicesParmFromSP,
doesn’t have any special property settings to help resolve the parameters. When you
open the report, Access prompts you for the input parameters, one at a time, as shown
in Figure 29-4.

Figure 29-4  When you open a simple report bound to a parameter query, Access prompts you for 
the parameter values.

Although the parameter names are relatively self-explanatory, the Date_After parameter
doesn’t tell you that you’ll see invoices produced on or after the date you enter. Also, the
Enter_Company_Name parameter doesn’t give you any clue that you can enter all or
part of a company name. For example, if you type 1/15/2007 for the date and the letter
C for the company name and click OK, Access displays a result as shown in Figure 29-5.
(You should see 18 invoices.)

Figure 29-5  These are the results you’ll see with the sample report based on a parameter query 
displaying all invoices created on or after January 15, 2007, for companies that have a name begin-
ning with the letter C.

  Working with Input Parameters 1573

C
h

ap
te

r
29

C29623252.indd 1573 2/23/2007 9:48:32 PM

If you don’t want the user to see the parameter prompt at all, you can set the Input
Parameters property of the report. Open the rptXmplInvoicesParmFromSP report in
Design view. In the Property Sheet window, click the Data tab, and locate the Input
Parameters property. When a report is bound to a record source that accepts input
parameters, you can enter a value for each of the parameters in this property. (Separate
the parameter declarations with commas.) To specify a parameter, you need to supply
the parameter name, the data type of the parameter, and a value for the parameter. As
you have already seen, the name of the parameter for the stored procedure used by this
report is @Enter_Company_Name. If you want this report to always display invoices
created within the last 90 days and only for companies that have names beginning with
the letter C, enter the following in the Input Parameters property:

@Enter_Company_Name nvarchar(50) = 'C',@Date_After datetime = (Date()-90)

Notice that you’re taking advantage of the Access built-in Date function to fetch the cur-
rent date and then subtract 90 days to provide one of the parameter values. The report
should now look like Figure 29-6.

Figure 29-6  You can resolve a parameter by setting a report’s Input Parameters property.

The sample database contains records only up through July 7, 2007, so to get any
results, you might have to temporarily set your system clock back. Set your system date
to June 15, 2007, and then switch to Print Preview by clicking the arrow in the Views
group on the Home tab and clicking Print Preview from the list of available views.
Access shouldn’t prompt you for any parameters, and you should see 12 invoices.

Notice that the report automatically displays the rows for companies that have a name
beginning with the letter C. If you think about it, this is similar to specifying a server
filter for a report that uses a table or view as its record source. The report sends a filter
to the server, and the user cannot change the filter. When you close the report, Access
asks whether you want to save the change you just made. Keep in mind that if you save
this change, Access no longer prompts for the parameters when you open the report.

C
h

ap
ter 29

1574 Chapter 29  Building Reports in an Access Project

C29623252.indd 1574 2/23/2007 9:48:32 PM

Note
You might notice that the examples and the steps for applying server fi lters and using

input parameters are very similar in both forms and reports. Keep in mind that both

server fi lters and input parameters are properties that modify the result returned by the

record source. After you understand the principles behind server fi lters and input param-

eters, you can use them effectively in both your forms and your reports.

What if you want to allow the user to specify a different company every time the report
opens? You could certainly leave the Input Parameters property blank and let Access
prompt the user for the parameters. However, if the variable names are too cryptic or
you want something that would be easier for your users to understand, you can enter
more descriptive terms in the Input Parameters property as follows:

@Date_After datetime = [Invoices on or after date:],

@Enter_Company_Name nvarchar(50) = [Enter all or part of a company name:]

As you learned in the previous chapter, the previous settings accomplish a substitution
of each parameter name in the query with a parameter value that provides more infor-
mation. We created a sample report in the database that includes this parameter sub-
stitution in the Input Parameters property, rptXmplInvoicesCustomParameter. When
the user opens this report, Access prompts for the substituted parameter names, not
the original names, as shown in Figure 29-7. Now your users might have a better idea of
what information is being requested.

Figure 29-7  You can use more descriptive requests for parameter values.

If you read the previous chapter and followed the examples on input parameters, every-
thing discussed so far for reports should seem familiar. You can use input parameters
to control the data the server returns. If the parameter name is too cryptic, you can
substitute a more descriptive request for information. However, you can still run into
problems if your users don’t know what company they are looking for or can’t remem-
ber how to spell the company name.

Chapter 28 proposed using a form with a combo box to select the name of the company
you want to view. This solution also works great for reports. You can build a form simi-
lar to the one shown in Chapter 28, except now you’re using it to open a report instead
of a form, and the form needs to prompt for two parameter values. This method is espe-
cially useful if you want to limit the data in the report to a specifi c date range by using
a form to supply the beginning and end date parameters to your report. Now let’s take
a look at an example of a form that can be used to select a starting date and a company
name to view in a report.

Note
You might notice that the examples and the steps for applying server fi lters and using

input parameters are very similar in both forms and reports. Keep in mind that both

server fi lters and input parameters are properties that modify the result returned by the

record source. After you understand the principles behind server fi lters and input param-

eters, you can use them effectively in both your forms and your reports.

  Working with Input Parameters 1575

C
h

ap
te

r
29

C29623252.indd 1575 2/23/2007 9:48:33 PM

In the sample database, you can find a form, fdlgXmplInvoiceParm, that provides a
box to enter a date (called txtDate) and a list of company names in a combo box (called
cmbCompany). You can open the form, enter a date, and select a company name from
the list, as shown in Figure 29-8.

Figure 29-8  You can enter a date and choose a value from a combo box on a form that resolves 
stored procedure parameters.

Click OK, and a report opens to display the invoices after the date you entered for the
company you selected, as shown in Figure 29-9. This report, rptXmplInvoicesParm-
FromForm, uses the same parameter stored procedure (spXmplInvoiceParm) as its
record source. However, now Access doesn’t need to prompt the user for the report
parameters.

Figure 29-9  This sample report uses a parameter query, and the parameter is resolved from a 
value chosen from a list in another form.

As you learned in the previous chapter, the secret is that the report’s Input Parameters
property has a special setting as follows:

@Date_After datetime = [Forms]![fdlgXmplInvoiceParm]![txtDate],

@Enter_Company_Name nvarchar(50) = [Forms]![fdlgXmplInvoiceParm]![cmbCompany]

C
h

ap
ter 29

1576 Chapter 29  Building Reports in an Access Project

C29623252.indd 1576 2/23/2007 9:48:33 PM

The interesting values assigned to the parameters are references to the two controls
on the fdlgXmplInvoiceParm form. This special syntax [Forms!] asks Access to look
at all the open forms, fi nd the form named fdlgXmplInvoiceParm, and then fi nd
the control on the form named txtDate and the control named cmbCompany. The
report doesn’t open on its own, however. Special code attached to the buttons on the
 fdlgXmplInvoiceParm form opens the report when the user clicks the OK button. For
now, you need to understand only that once the report is opened, the input parameter
of the report knows to look at the fdlgXmplInvoiceParm form for the needed input
parameter information. For more details about Visual Basic, see Chapter 19, “Under-
standing Visual Basic Fundamentals.”

As you begin to work with more advanced report designs in your Access project, you

might want to start using embedded subforms and subreports to display more complex

information. Remember that you need to keep server effi ciency in mind when designing

your subforms and subreports as well. Use parameters and server fi lters where appropri-

ate to restrict the data to only what the user needs to see. If you are using a subform

in your report (for example, to display a PivotChart), be sure to set the Recordset Type

property to Snapshot (instead of Updatable Snapshot) because this requires fewer server

resources.

The properties for reports that are unique to an Access project have a lot in common
with those for forms. The key point to keep in mind is that forms and reports are differ-
ent in an Access project only because of the way they need to interact with SQL Server.
The major design elements are the same, so once you understand how forms and
reports interact with SQL Server, you can design your forms and reports using the same
techniques you used when building these objects in Access desktop databases.

This concludes all the material on designing objects in Access projects. You should now
have a good understanding of how an Access project is different from an Access desktop
database, and you should also understand the power and versatility that SQL Server
can offer to your application design. If you are thinking about converting an existing
Access desktop database to an Access project, Access provides an upsizing wizard to
help with this task.

INSIDE OUT Make Sure That Any Subreports or Subforms That You Use in a
Report Are Also Effi cient

As you begin to work with more advanced report designs in your Access project, you

might want to start using embedded subforms and subreports to display more complex

information. Remember that you need to keep server effi ciency in mind when designing

your subforms and subreports as well. Use parameters and server fi lters where appropri-

ate to restrict the data to only what the user needs to see. If you are using a subform

in your report (for example, to display a PivotChart), be sure to set the Recordset Type

property to Snapshot (instead of Updatable Snapshot) because this requires fewer server

resources.

INSIDE OUT

  Working with Input Parameters 1577

C
h

ap
te

r
29

C29623252.indd 1577 2/23/2007 9:48:34 PM

C29623252.indd 1578 2/23/2007 9:48:34 PM

